Writing a Compiler using Perl,
Pegex and Moo

By
Vikas Kumar
vikas@cpan.org
(vicash in #pegex, #vic on freenode)

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

mailto:vikas@cpan.org

Compiler Writing Is Difficult !
Compilers

Principles, Techniques
and Tools

Alired V. Aho
Ravi Sethi
letirey D. Ullman

selechive
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

Terminology

* Frontend
— Takes text as input

— Parses it into lexical tokens

— Takes intermediate code or lexical
tokens as input
— Generates target code as output

* |ntermediate Code

— Necessary for compilers with
multiple backends and frontends

— Allows abstraction of backends and
frontends

e Abstract Syntax Tree (AST)
— Allows syntax management
— Operator precedence management

INTERMEDIATE
CODE

BACKEND

OUTPUT

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

Compiler Writing Can be Made Easy !

Use Perl instead of C/C++ to do it
— Object Oriented Design required for sanity

Use Pegex to build the Frontend instead of
using bison/yacc and flex/1lex.

Use Moo and Moo::Role to handle multiple
Backends

Use an internal Perl object do handle AST and
Intermediate Code (or not...)

selective
®

What remains difficult ...

* Optimization of the generated code

— Avoid if not needed for your case such as for Domain Specific
Languages (DSL)

— Your custom backend may be designed to generate pre-
optimized code

e Data flow analysis

— Can be skipped if not needed, esp. for generating non-assembly
language targets like generating Perl/SQL/C++ from a high level
DSL

e Verification of Output
— Absolutely necessary, your stuff should work |

— Tests can only get you so far, you cannot predict your compiler’s
users.

selective
®

intellect

Overview

* Writing a frontend using Pegex
e Targeting a single backend using Pegex::Base

e Targeting multiple backends using Moo and
Moo::Role

 Example: VIC™ —a DSL compiler for
Microchip® PIC® microcontrollers

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

Writing a Frontend

Tokenization of input text

— Traditionally done using a lexer like flex/lex

Parsing the tokens using a grammar

— Traditionally done using a grammar generator like
bison/yacc

Create Abstract Syntax Tree (AST)
Generate intermediate code for the backend

selective
® .

Writing a Frontend

* Tokenization of input text

— Use Pegex

e Parsing the tokens using a grammar

— Use Pegex
* Create Abstract Syntax Tree (AST)

— Use Perl objects or Use Pegex

e Generate intermediate code for the backend
— Optional: depends on your situation

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

Pegex Terminology

* Parser: The top level class that is given:
— The input text to be compiled/parsed
— The user’s Grammar class
— The user’s Receiver class

e Grammar: User provided grammar

e Receiver: A class that has optional functions that:
— Allow user to handle and modify each token that’s parsed
— Allow user to create AST

— Allow user to invoke the Backend and generate target code
or final output

— Allow user to create intermediate code, and then call
Backend to generate final output

selechive

R agt
inteliect

Using Pegex

1. Write a Pegex grammar
i. Handles both tokenization & parsing at once
ii. Grammar is similar to writing a Regex
iii. Greedy parsing will be used

2. Compile the Pegex grammar into a class
i. Runtime or pre-compiled
ii. Tree of small regexes used to manage grammar

3. Write a Receiver

selechive

R agt
inreiec

Sample Example - VIC™

PIC P16F690;
light up an LED on pin RA@
Main {

digital output RAO;

write RAO, 1;

%grammar vic

program: comment* mcu-select statement* EOS

mcu-select: /’PIC’ BLANK+ (mcu-types | ‘Any’) line-ending/
mcu-types: / ALPHA+ DIGIT+ ALPHA DIGIT+ ALPHA? /
line-ending: /- SEMI - EOL?/

comment: /- HASH ANY* EOL/ | blank-line

blank-line: /- EOL/

statement: comment | instruction | expression | block
.. and so on ..

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City

® . .
inreliect

Grammar Syntax

* Z%grammar <name>

e version <version>

* ## write comments

e <rule>: <combine other rules>

* The class Pegex::Atoms has a collection of pre-
defined rules called atoms you can use:
— SEMI (qr/;/)
— EOL (gr/\r\n|\n/),
— ALPHA (qr/[A-Za-z]/),
— DIGIT(gr/[0-9]/) and many others.

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

Using Pegex Grammars

* Saveasa .pgx fileto be compiled using the
commandline into a Module

— Useful for versioned grammars and for release
handling

— Useful for large grammars

* Or use as string constant and give to
Pegex::Parser for runtime compilation of
grammar
— Useful for small grammars

— Useful for dynamic grammar class generation if you
are into that

selective
o.w 1

Creating Your Grammar Class

package VIC::Grammar;
o . use Pegex::Base;
package VIC::Grammar; extends ‘Pegex::Grammar’;
use Pegex; :Base; use constant file => “./vic.pgx’;
autogenerated code #i##
extends ‘Pegex::Grammar’; sub make_tree {
: _y ¢ .). {
use constant file => ./vic.pgx’; ‘rgrammar’ => ‘vic’,
that’s it ### ‘+toprule’ => ‘program’,
‘+version’ => ‘0.2.6°,
1; ‘comment’ => {
‘.any’ => [
{
‘.rgx’ =>
gr/\G[\ \t]*\r2\n?\#.*\r2\n/
¥
{
‘.ref’ => ‘blank_line’
}
$ perl -I1lib -MVIC::Grammar=compile)]
#... And so on for other rules ...
}
}
1;
selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Tﬁieﬂec?

Using Pegex

1. Write a Pegex grammar
i. Handles both tokenization & parsing at once
ii. Grammar is similar to writing a Regex
iii. Greedy parsing will be used

2. Compile the Pegex grammar into a class
i. Runtime or pre-compiled
ii. Tree of small regexes used to manage grammar

3. Write a Receiver

selective
®

Creating Your Receiver Class

package VIC::Receiver;
use Pegex::Base;
extends ‘Pegex::Tree’;

* Inherit Pegex::Tree

* For each grammar rule, you may write a
got_<rule> handler function

* The got_<rule> function:

— receives the parsed token or arrays of
arrays of tokens

— Allows you to modify/ignore the token
received

— Allows you to invoke Backend code if
desired

— Convert the tokens into a custom AST

— Generate Intermediate Code as needed for
the received tokens

* The got_<toprule> or final function can receive
complete set of tokens created as array-of-array
by Pegex

— Can be used as an AST as well

— Return the generated target output from
the Backend

June 9, 2015

has ast => {}; # custom AST object

single Backend handling
has backend => sub { return VIC::Backend->new; }

multiple Backend handling.
Requires got_mcu_type() for the mcu-type rule
has backend => undef;

sub got_mcu_type {

}

my $self = shift;
my $type = shift;
$self->backend(
VIC::Backend->new(type => $type));

remove comments from AST
sub got_comment { return; }

top-rule receiver function
sub got_program {

YAPC::NA 2015, Salt Lake City

my $self = shift;
my $ast = shift; # use the Pegex generated AST

print Dumper($ast); # dump the AST if you want
.. create $output using $self->backend ..#

my $output = $self->backend->generate_code($ast);
return $output;

selective
. 1
intellect

Creating Your Compiler Class

Create a Pegex: :Parser
object

Invoke it using your Grammar
class and Receiver class

Provide it input text using the
parse() function

Return value is compiled output

Debugging of the parsing is
configurable at runtime

June9, 2015 YAPC::NA 2015,

package VIC;

use Pegex::Parser;
use VIC::Grammar;
use VIC::Receiver;

sub compile {
my $input

shift;

my $parser
Pegex: :Parser->new(
‘grammar’ =>
VIC: :Grammar->new,

‘receiver’ =>
VIC: :Receiver->new,
‘debug’ => 0
)

return $parser->parse($input);

N

selective

Salt Lake City ?nie%%ect

Advantages of Pegex

Writing Grammars is easy
— Speed
— Rapid Prototyping

No explicit debugging of Regexes required

Implementing got <rule> functions will tell

you which rule was invoked

Pegex::Parser with debug set to 1 shows you

how the regex matching is done

selechive

. e .
inreiiecy

Writing a Backend

* Needed for code generation for your target
 Example targets:

— Chips: code generated will be assembly code or
binary code

— Bytecode: JVM/LLVM
* Write your own Scala/Clojure variant in Perl

— Code: C/C++/Perl/Lisp/SQL/Lua/lavascript
* Write high-level logic translators or DSLs

selechive

R agt
inreiec

Depending on your Requirements...

Single Backend Multiple Backends

 Simpler design * Extendable design

* Target code generation can * Each target may have some

be done with specialized
functions in a single class

Use Mo/Pegex::Base to
keep it light weight, or

Your Receiver class can have
all the code generation
functions in it.

common and some different
features

Compiler should handle all
the features seamlessly

Use Moo and Moo::Role for
simplicity and extendability

selechive

R agt
inreiec

Using Moo::Role with VIC™

e Each Chlp feature is defined package VIC::Backend::Roles::Timer
as a Role using requires

use Moo: :Role;

° EXBI’T\p'ESZ requires qw(timer_enable
timer_disable timer _pins);
— UART }
— USB package VIC::Backend::Funcs::Timer
T {
Timers use Moo::Role;
e Each feature ## default implementations
implementation is also sub timer_enable {
. # .. Generate target code ..
defined as a Role ! y
sub timer_disable {
.. Generate target code ..
}
}

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

Using Moo::Role with VIC™

package VIC::Backend: :P16F690;
use Moo;
use Moo: :Role;

provide custom implementation
sub timer pins {
return { TMRO => [12, ‘TMR’] };

inherit the roles and default
implementations

my @roles = qw(
VIC: :Backend: :Roles: :Timer
VIC: :Backend: :Funcs: :Timer
)s

with @roles;

June 9, 2015

YAPC::NA 2015, Salt Lake City

package VIC::Backend::Roles::Timer
{
use Moo: :Role;

requires qw(timer_enable
timer_disable timer _pins);

}

package VIC::Backend: :Funcs::Timer
{
use Moo::Role;
default implementations
sub timer_enable {
.. Generate target code ..
}
sub timer_disable {
.. Generate target code ..

selective

?hMMecf

Checking for a feature

package VIC: :Backend: :Roles::USB
{
use Moo: :Role;
requires qw(usb _send usb _recv usb_pins);
}
package VIC: :Backend: :Funcs::USB
{
use Moo: :Role;
default implementations
sub usb_send {
my $self = shift;
.. Give a nice error message here ..
return unless $self->does(“VIC::Backend::Roles::USB’);
.. Generate Target Code here ..

}

sub usb_recv {
.. Generate Target Code here ..

}

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

Using Moo::Role

Each chip feature is defined

as a Role using requires

Examples:
— UART
— USB
— Timers

Each feature
implementation is also
defined as a Role with
functions

Functions check if Role is
supported for target using
does

Allows:

Separation of chip details into
separate classes

Separation of code
generation of feature into
separate classes

Special implementations
based on chip internals

Compiler can inform user that
chip doesn’t support a
feature in the input code

Compiler can list chip
features on the commandline

selechive

R agt
inteliect

Summary

* Use Pegex to create compiler frontend
— Writing grammars is like writing a Regex
— Receiver class contains the main compiler logic
— Single backend can be in the Receiver class itself
— Debugging the Grammar is easy

* Use Moo::Role to create multiple backends

— Allows target feature handling in a clean Object
Oriented manner

— Extendable design
— Get informative error messages from compiler

selechive

R agt
inreiec

Questions ?

https://selectiveintellect.github.io/vic/
Join #pegex on freenode IRC
Join #vic on freenode IRC
Follow us on twitter @selectintellect or @ _vicash

selective
June 9, 2015 YAPC::NA 2015, Salt Lake City Thtellect

https://selectiveintellect.github.io/vic/

