
Wisecracker™: A high performance distributed cryptanalysis framework

Wisecracker™
A high performance distributed cryptanalysis framework

API Documentation

Version 1.0

October 30 2012

Written by
Vikas N Kumar

1
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

Introduction

Wisecracker is a distributed high performance computing framework that enables users to perform
cryptanalysis easily by distributing their computations across a cluster of multiple multi-core
processors and graphical processing units (GPUs). The high level design information about
Wisecracker can be obtained by reading the technical white paper. This document focuses on the API of
the framework itself and outlines how to use the framework. It also describes some details about the
source code structure. This document is for Wisecracker version 1.0. We recommend that the reader
read the technical white paper before reading this document.

The framework provides both a C and C++ API. In this document we shall focus on the C API.
The C++ API is similar to the C API and we shall outline briefly how to use the C++ API in later
sections.

Installation and Pre-requisites

The user can download the source code for Wisecracker from
https://github.com/vikasnkumar/wisecracker using the program git or by using the download link
provided on github.com or on our website selectiveintellect.com. Once downloaded, the
user should follow instructions given in the file called INSTALL for setting up their system to compile
and run Wisecracker and its sample applications. These instructions will always be up-to-date regarding
installation of pre-requisites, and directions on compiling Wisecracker.

The user will need to install OpenCL libraries and header files for his system configurations. This can
be downloaded from Intel, AMD and/or NVIDIA's websites, respectively. Apple's version of OpenCL
is provided with Mac OSX Snow Leopard or higher. The user will need to install an implementation of
MPI such as OpenMPI or MPICH if they want to run Wisecracker across multiple systems.

Understanding The Directory Structure

Below are the list of important directories that are part of the source code:
• include/ - This directory holds all the header files that are needed for compiling Wisecracker

and also for compiling any applications written using Wisecracker. The main header file in here
is wisecracker.h which includes all the other header files present in the
include/wisecracker/ directory as needed.

• src/ - This directory holds all the source code that compiles into the library for Wisecracker
which can then be linked by applications using Wisecracker.

• apps/ - This directory holds sample applications that are provided with Wisecracker as
examples and also as those that can be used out-of-the-box by users.

• scripts/ - This directory contains helper scripts that can be used by the user to install pre-
requisites or perform other tasks. Currently in version 1.0 only one script exists in this directory
called setup_amazonaws.sh which will setup an Amazon EC2 GPU virtual machine to be

2
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

https://github.com/vikasnkumar/wisecracker

Wisecracker™: A high performance distributed cryptanalysis framework

ready to run and install Wisecracker.
• deps/ - This directory holds custom cmake files that are dependency oriented.
• docs/ - This directory holds any documents that might be useful to the user.

Using the Framework

The user has to only include the wisecracker.h header file for writing an application as it
internally includes multiple header files and also includes the C++ API header file which will get
included if being compiled by a C++ compiler.

The user can pick either the static library or the shared library (DLL) to link with depending on their
choice. The static library is called libwisecracker_s.a on Linux and Mac OSX and
wisecracker_s.lib on Windows. The shared library is called libwisecracker.so on Linux,
libwisecracker.dylib on Mac OSX and wisecracker.dll on Windows.

If the user chooses to link with the static library they have to define the macro
WC_LINKING_STATIC before including the header file or as a compiler option. If the user chooses to
link with the shared library or DLL they do not need to define the afore-mentioned macro.

The C API

After the user has included the header file wisecracker.h, they can initialize the executor, setup
the callbacks for the executor to invoke and run the executor. When the user is done using the executor
they can destroy the executor object. In this section we discuss every function, callback function and
useful macros needed for a user to use Wisecracker correctly.

Main Executor Functions
The executor object is an opaque object always returned and used as a pointer to wc_exec_t by all
the executor functions. These functions are declared in the
include/wisecracker/executor.h header file.

• wc_exec_t *wc_executor_init(int *argc, char ***argv)
◦ If and only if the user is not using MPI, these arguments may be NULL. If the user is using

MPI, these arguments necessarily have to be pointer to the argc and argv parameters
passed to the main() function in the program. MPI needs these arguments for initializing
itself. It is recommended that the user not use NULL as parameters.

◦ This function initializes MPI and other internal details of the executor object.
◦ Only after this function has been successfully initialized can any of the executor property

functions (described later) will return valid values.
◦ The function returns a valid pointer on success and NULL on failure.
◦ This function should be called only once if using MPI.
◦ This pointer object is not reference counted and will need to be used safely across all the

other functions. We do not recommend using this pointer object simultaneously from

3
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

separate threads.
◦ This function is re-entrant.

• void wc_executor_destroy(wc_exec_t *wc)
◦ This function destroys the executor object and shuts down the usage of OpenCL and MPI.
◦ If using MPI, once this function has been called, the user cannot call the initialize function

again to recreate an executor.
◦ If the user wants to reuse an executor they can do so with the same executor object.
◦ This function returns no values and will cleanup the executor's allocated memory.

• wc_err_t wc_executor_setup(wc_exec_t *wc,
const wc_exec_callbacks_t *cb)

◦ The user should call this function and provide a pointer to a wc_exec_callbacks_t
object which will hold pointers to all the callback functions that will be invoked by the
executor. This callback datatype is described later in this section.

◦ This function will return an error of type wc_err_t which can have any of the values
given in the executor.h header file. Success is denoted by the WC_EXE_OK value.

◦ The user can call this function multiple times to change the values of the callbacks before
each run. This way the user can create different callback objects for different problems and
use the same executor object for execution.

• wc_err_t wc_executor_run(wc_exec_t *wc)
◦ The user should call this function with the wc_exec_t object that has already been setup

by the wc_executor_setup() function.
◦ This function can be called multiple times by the user to execute multiple runs.
◦ The function returns the value WC_EXE_OK on success and any of the descriptive error

values given in the executor.h on failure.
◦ If during a run an MPI error occurs the function might abort the run depending on the

severity of the MPI related error. It tries its best to return cleanly without aborting the run.

Executor Property Functions
These functions are declared in the include/wisecracker/executor.h header file.

• int wc_executor_num_systems(const wc_exec_t *wc)
◦ This function returns the number of systems that the executor supports which can be 1 or

more if using MPI.
◦ If not using MPI this function will return the value 1.
◦ If the parameter is NULL or there has been an error, the function will return -1.

• int wc_executor_system_id(const wc_exec_t *wc)
◦ This function returns the ID for the running executor which is used by MPI internally.
◦ If the user is not using MPI, this function will return the value 0.
◦ The master executor will always have the value 0.

4
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

◦ The slave executors will have the values greater than 0.
◦ On error, this function will return -1.

• uint64_t wc_executor_num_tasks(const wc_exec_t *wc)
◦ This function returns the number of tasks that the current run of the executor will be

processing.
◦ On error it will return 0 or if called before the wc_executor_run() function has been

called will also return 0.
◦ This is useful if the user wants to know how many total tasks will be executing and the

recommended place to call this function would be in the callbacks.

• uint32_t wc_executor_num_devices(const wc_exec_t *wc)
◦ This function returns the number of OpenCL devices that exist on the current system.
◦ It might return 0 if called before the wc_executor_setup() function.
◦ On error it will return 0.
◦ It might be useful to call this function in some of the callbacks if necessary.

• void wc_executor_dump(const wc_exec_t *wc)
◦ This function is a generic function that will print the description of the contents of the

wc_exec_t object to stderr.

Executor Callbacks
The definitions of the callbacks are part of a structure wc_exec_callbacks_t which is declared in
the include/wisecracker/executor.h header file. We shall describe each one of the
members of the structure here. Some callbacks get exclusively called on the master executor and some
exclusively on the slave executor. If the application has been built without MPI or is being used in
single system mode, all the slave executor calls will be done on the master itself. Most callbacks are
optional but some are required and are noted accordingly.

• void *user – This is a pointer to an opaque object that the user can pass to the executor. The
executor will pass this object to the user in every callback so that the user can share information
between callbacks if needed.

• uint32_t max_devices – This is the maximum number of OpenCL devices per system
that the user wants to use. Some systems might have many devices and the user might want just
a few depending on the problem. If set to 0, the executor's OpenCL runtime will use all
available devices that match the device type. If using MPI, once this is set on the master all the
slaves will be using the same value.

• wc_devtype_t device_type – This denotes the type of device to be used by the
executor's OpenCL runtime. If using MPI, once this is set on the master all the slaves will be
using the same value. It can take three values – WC_DEVTYPE_CPU, WC_DEVTYPE_GPU and
WC_DEVTYPE_ANY. The default value is WC_DEVTYPE_ANY.

5
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

• wc_err_t (*on_start)(const wc_exec_t *wc, void *user)
◦ This function callback gets called by both the master and slave executors at the start of the

executor run if it has been set.
◦ The callback can return WC_EXE_OK on success and any of the other wc_err_t values

present in executor.h for failure.
◦ If this callback returns failure, the wc_executor_run() function will return

immediately.
◦ The user can use this function for initialization of their user data structures if needed.

• wc_err_t (*on_finish)(const wc_exec_t *wc, void *user)
◦ This function callback gets called by both the master and slave executors at the end of the

executor run if it has been set.
◦ The callback can return WC_EXE_OK on success and any of the other wc_err_t values

present in executor.h for failure.
◦ If this callback returns failure, the wc_executor_run() function will return

immediately.
◦ The user can use this function for initialization of their user data structures if needed.

• char *(*get_code)(const wc_exec_t *wc, void *user,
size_t *codelen)

◦ This function callback gets called on both the master and slave executors for retrieving the
OpenCL code.

◦ The user must return the code string as a buffer allocated using any of the WC_MALLOC,
WC_CALLOC or WC_REALLOC macros. The buffer need not be NULL terminated.

◦ The user also must return the length of the buffer in the codelen argument.
◦ If the user returns a NULL, the executor will stop the execution as this will be considered an

error.
◦ The reason this is needed since every system might have different OpenCL devices, and the

executor will compile the code for each device on each system.
◦ This callback is required.

• char *(*get_build_options)(const wc_exec_t *wc, void *user)
◦ This function callback gets called on both the master and slave executors for retrieving the

OpenCL code compile options if any. The user might need to define some compile time
macros or include file directories for their code.

◦ The user must return the compile option string as a NULL terminated buffer allocated using
any of the WC_MALLOC, WC_CALLOC or WC_REALLOC macros.

• void (*on_code_compile)(const wc_exec_t *wc, void *user,
uint8_t success)

◦ This function callback gets called on both the master and slave executors on compilation of

6
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

the OpenCL code. It informs the user if the compilation was successful or not.
◦ The value of the success variable can be 0 or 1.
◦ The user might be able to use this in event-based applications that might be using

Wisecracker.
◦ Very complex OpenCL code might take many seconds to compile, and hence having this

event might be useful to the user.

• uint64_t (*get_num_tasks)(const wc_exec_t *wc, void *user)
◦ This function callback gets called by the master executor to query how many total tasks the

user wants to distribute across the multiple systems and devices.
◦ If the user can return 0 on error.
◦ If MPI is being used, the master will communicate this value across to the slaves for the

wc_executor_num_tasks() property function to return the correct value.
◦ This callback is required.

• uint32_t (*get_task_range_multiplier)(const wc_exec_t *wc,
void *user)

◦ If set, this function callback gets called by the master executor to query a possible task
range multiplier for the task distribution across OpenCL devices.

◦ The user can return 1 if they do not know what to return as a value. If not set, the value is
assumed to be 1.

◦ An example of usefulness of this multiplier is when the devices are GPUs and the number of
tasks run into billions of tasks. Then the user can use the multiplier to scale the ranges
distributed to different OpenCL devices simultaneously to speed up computation across
GPUs. This can be seen in the code for the wisecrackmd5 sample application in the
apps/crackmd5.c file. This also helps reduce the communications for results for every
range between the slaves and the master executors.

◦ The user can pick an appropriate value by trying out different combinations and seeing
which value gives the best return in terms of speed and memory usage.

◦ If using MPI, the master executor will send this value to the slave executor.

• wc_err_t (*get_global_data)(const wc_exec_t *wc, void *user,
wc_data_t *out)

◦ This function callback is called by the master executor to retrieve a data buffer that will
need to be communicated to the slaves for sharing possible common data structures.

◦ This is an optional callback. This gets called in both the single system mode and multiple
system modes.

◦ The user might choose to allocate any buffers returned using any of the WC_MALLOC,
WC_CALLOC or WC_REALLOC macros.

◦ If the user chooses not to do so, they must set the free_global_data callback function
(described later) so that the user can free the memory using their own methods.

◦ The user should return WC_EXE_OK on success and an appropriate value on error.

7
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

• wc_err_t (*on_receive_global_data)(const wc_exec_t *wc,
void *user, const wc_data_t *gdata)

◦ This function callback is called on the slave executors once they receive the global data
buffers from the master when Wisecracker is being used with MPI for multiple systems.

◦ In single system mode, this function does not get called.
◦ The user can use this callback to inflate the buffers into custom data structures for possible

use by later callbacks and other functions.
◦ The user should return WC_EXE_OK on success and an appropriate value on error.

• wc_err_t (*on_device_start)(const wc_exec_t *wc,
wc_cldev_t *dev, uint32_t devindex,
void *user, const wc_data_t *gdata)

◦ This function callback is called on the slave executor in the multiple system run and on the
master executor on the single system run on the start of the executor run for the device.

◦ This gets called once per OpenCL device before the processing of the task ranges begins.
◦ The argument dev is an object of datatype wc_cldev_t which is defined in the

executor.h header file.
◦ This object can be used by the user in this callback to create OpenCL kernels and memory

buffers for the device. The executor will already have created OpenCL command queues
and contexts, so the user does not have to. It will also provide access to the pre-compiled
OpenCL program object for creating the kernels.

◦ The devindex argument points to the index to the array of OpenCL devices in the current
executor system.

◦ The global data is also passed as an argument to this function in gdata in case the user
wants to use it.

◦ This callback is optional.
◦ The user should return WC_EXE_OK on success and an appropriate value on error.

• wc_err_t (*on_device_finish)(const wc_exec_t *wc,
wc_cldev_t *dev, uint32_t devindex, void *user,
const wc_data_t *gdata)

◦ This function callback is called on the slave executor in the multiple system run and on the
master executor on the single system run on the start of the executor run for the device.

◦ This gets called once per OpenCL device after all the task ranges provided to the system
have been processed.

◦ This callback function can be used to free memory by releasing OpenCL memory buffers
and kernel objects. The command queues and contexts that are created by the executor
should not be released here.

◦ The arguments dev, gdata and devindex have the same meanings as defined for the
on_device_start callback.

◦ The user should return WC_EXE_OK on success and an appropriate value on error.

8
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

• wc_err_t (*on_device_range_exec)(const wc_exec_t *wc,
wc_cldev_t *dev, uint32_t devindex, void *user,
const wc_data_t *gdata, uint64_t start, uint64_t end,
cl_event *out_event)

◦ This function callback is called on the slave executor in the multiple system run and on the
master executor on the single system run on the start of the executor run for the device.

◦ This callback is required.
◦ This callback gets invoked per device with a range of tasks to complete where start and

end are the indexes of each range. The range is inclusive of the start value but not of the
end value, i.e. it is [start, end).

◦ For a more efficient run, the user should enqueue all the OpenCL kernels and read-write
tasks, and return a single OpenCL event in the out_event pointer that the executor can
wait on per device per task range.

◦ The arguments dev, gdata and devindex have the same meanings as defined for the
on_device_start callback.

◦ The user should return WC_EXE_OK on success and an appropriate value on error.

• wc_err_t (*on_device_range_done)(const wc_exec_t *wc,
wc_cldev_t *dev, uint32_t devindex,
void *user, const wc_data_t *gdata,
uint64_t start, uint64_t end,
wc_data_t *results)

◦ This function callback is called on the slave executor in the multiple system run and on the
master executor on the single system run on the start of the executor run for the device.

◦ This callback is required only if the slave wants to send results back to the master.
◦ This callback gets invoked per device when a range of tasks completes processing where

start and end are the indexes of each range. The range is inclusive of the start value
but not of the end value, i.e. it is [start, end).

◦ The user should write the processing code in this callback.
◦ The arguments dev, gdata and devindex have the same meanings as defined for the

on_device_start callback.
◦ The user should return WC_EXE_OK on success and an appropriate value on error.
◦ If the user wants to stop processing because results might be acceptable, such as in the case

of successful reversing of an MD5 cryptographic checksum, the user can return
WC_EXE_STOP. This will be sent to the master and it will instruct all the slaves to
immediately stop processing.

◦ The user should pack the results for the given range into a buffer that must be allocated
using the WC_MALLOC, WC_CALLOC or WC_REALLOC macros. This is because memory
management of these buffers is done by the executor which uses these macros internally.

◦ The slave sends the results and the error return value for the given range back to the master.

9
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

• wc_err_t (*on_receive_range_results)(const wc_exec_t *wc,
void *user, uint64_t start, uint64_t end,
wc_err_t slverr, const wc_data_t *results)

◦ This function callback is called on the master executor in both the multiple and single
system runs.

◦ Each set of results and the error return code from the on_device_range_done callback
function is returned back in this callback to be unpacked into custom data structures if
necessary or for further processing.

◦ The slave error can be checked for errors or stop indications and the user can appropriately
return either WC_EXE_OK or any other error value.

◦ The user should return WC_EXE_OK on success and an appropriate value on error.
◦ If the user wants to stop processing because results might be acceptable, such as in the case

of successful reversing of an MD5 cryptographic checksum, the user can return
WC_EXE_STOP. The master will then instruct all the slaves to stop processing.

• void (*free_global_data)(const wc_exec_t *wc, void *user,
wc_data_t *gdata)

◦ This function callback is called on all the executors for freeing the memory that was
allocated in get_global_data and on_receive_global_data.

◦ If this function callback is not set, the executor uses the WC_FREE macro to free the
memory.

• void (*progress)(float percent, void *user)
◦ This function callback gets called periodically by the master executor to notify of progress

that has taken place in processing of all the tasks.
◦ The user can use this to update any user interface with details about how much computation

has completed.

Utility Functions
These functions are declared in the include/wisecracker/utils.h header file.
They are helpful for the user to perform certain tasks which are system oriented and might need cross-
platform implementations.

• int wc_util_timeofday(struct timeval *tv)
◦ This is a cross-platform function for retrieving the time of day in epoch time for Windows,

Linux and Mac OSX.
◦ It returns -1 on error and 0 on success.
◦ It will fill the struct timeval parameter with the values of the time of day in seconds

and microseconds.

• char *wc_util_strdup(const char *str)
◦ This is an implementation of the strdup() function that is cross-platform and checks for

allocation errors as well.

10
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

◦ It will return NULL on error or if the string length was 0.
◦ To free the memory returned by this function the user should use the macro WC_FREE. The

WC_FREE macro is explained later.

• int wc_util_glob_file(const char *filename,
unsigned char **outdata, size_t *outlen)

◦ This function takes a filename and reads the contents of the file into an unsigned char
buffer and returns the length of the buffer.

◦ The allocation of the buffer is done by the function itself.
◦ The function returns 0 on success and -1 on error.
◦ The user should free the returned buffer using WC_FREE.

• const char *wc_util_license()
◦ This function returns a constant pointer to a character buffer to the license for the

framework.
◦ This function should be used if the user is adding applications using the licensed

framework .

• size_t wc_util_charset_size(wc_util_charset_t chs)
◦ There are different character sets supported internally by Wisecracker which can be found

defined in the utils.h header file. This function returns the number of characters in the
given character set.

◦ It will return 0 on error.

• wc_util_charset_t wc_util_charset_fromstring(const char *str)
◦ This function takes a string and returns the corresponding character set enumeration value.
◦ On error it will return the default character set value and will print a warning message on

stderr.

• const char *wc_util_charset_tostring(wc_util_charset_t chs)
◦ This function is for printing the string form of the enumeration values of the character set.

Useful cross-platform Macros
These macros are declared in the include/wisecracker/macros.h header file. Some of them
are cross-platform for portability. Below are the most useful ones:

• Memory Allocation
◦ WC_MALLOC – This macro is used all over the source code for allocating memory blocks.

It uses the malloc() function on Linux and Mac OSX and the HeapAlloc() function
on Windows. It is recommended that this always be used in tandem with WC_FREE. Any
memory blocks that are exchanged between executors and callbacks must be allocated
using the WC_MALLOC, WC_CALLOC or WC_REALLOC macros and freed with WC_FREE.

◦ WC_CALLOC – This macro is just a cross-platform wrapper around the calloc() and

11
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

HeapAlloc() functions for Linux and Windows, respectively.
◦ WC_REALLOC – This macro is also a cross-platform wrapper around the realloc() and

HeapReAlloc() functions for Linux and Windows, respectively.
◦ WC_FREE – This macros is a wrapper for the free() and HeapFree() functions for

Linux and Windows, respectively. This should always be used to free any memory returned
by the executor. It also sets the input pointer value to NULL after freeing the memory.

• Logging
◦ WC_SET_LOG_LEVEL – This macro sets the log level to any of the options present in the

WC_LOGLEVEL_* enumerations present in the macros.h header file. The default level is
WC_LOGLEVEL_DEBUG.

◦ WC_ERROR – This is a printf() style macro which takes in variable arguments and
prints to stderr. It also prints a prefix string of “ERROR:” followed by the function
name and line number. It should be used for error logging. It checks for the log level before
printing.

◦ WC_WARN – This is a printf() style macro which takes in variable arguments and prints
to stderr. It also prints a prefix string of “WARN:” followed by the function name and
line number. It should be used for logging warnings. It checks for the log level before
printing.

◦ WC_INFO – This is a printf() style macro which takes in variable arguments and prints
to stderr. It also prints a prefix string of “INFO:” followed by the function name and
line number. It should be used for logging informative statements. It checks for the log level
before printing.

◦ WC_DEBUG – This is a printf() style macro which takes in variable arguments and
prints to stderr. It also prints a prefix string of “DEBUG:” followed by the function
name and line number. It should be used for logging very informative statements that might
be helpful in debugging the software. It checks for the log level before printing.

◦ WC_NULL – This is a printf() style macro which takes in variable arguments and prints
to stderr. It prints no prefixes and is just a wrapper around the fprintf() function.

◦ WC_ERROR_OUTOFMEMORY – This takes in an allocation size value that failed to allocate
and prints a default error statement citing an out of memory violation for that size.

◦ WC_ERROR_OPENCL – This takes in the name of an OpenCL function and the error code
returned when the OpenCL function was invoked and prints an error statement citing the
OpenCL error that occurred for that function.

• String comparisons
◦ WC_STRCMPI – This is a cross-platform wrapper around the case-insensitive string

comparison between two strings. It wraps the strcasecmp() function on Linux and Mac
OSX, and stricmp() function on Windows.

◦ WC_STRNCMPI – This is a cross-platform wrapper around the case-insensitive string
comparison of a given length between two strings. It wraps the strncasecmp() function
on Linux and Mac OSX, and strincmp() function on Windows.

• Thread, Thread Signal and Locks – Various macros for threads, condition variables (or signals)
and locks have been provided in the macros.h header file. They can be used by the user if
they like or need cross-platform thread functions but it is not necessary. The user can read the

12
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

macros in detail and refer to the corresponding function documentation. We shall not be
explaining each macro here.

We now move on to explaining the classes and member functions of the C++ API, which is very similar
to the C API in concept and design as it is just a C++ wrapper around the C API.

The C++ API

The C++ wrapper classes for the executor and the callback structure can be found in the
include/wisecracker/cppwrapper.h file which automatically gets included in the
include/wisecracker.h file if the compiler is C++. The static and dynamic libraries for
Wisecracker already have the C++ wrapper compiled in, so the user will not have to link in any special
C++ libraries.

We describe each class and member function of the class in the C++ API here by referring to the
corresponding C API documentation in this document as appropriate.

All the C++ classes are in the wc namespace.

The Executor Class

The Executor class wraps all the wc_executor_*() functions. The member functions are as
follows:

• Executor(int *argc, char ***argv) – This constructor is the only constructor for
the class and should be invoked in the main() function of the program. It has the same
properties as the wc_executor_init() function. On error it throws a
std::runtime_error exception if MPI failed to initialize or there was a memory
allocation failure.

• ~Executor() – This destructor wraps the wc_executor_destroy() function and works
in the same way as described for the C API.

• wc_err_t setup(CallbackInterface *cb) – This member function is
representative of the wc_executor_setup() function and takes a pointer to a derived
object of the CallbackInterface abstract base class which represents the callbacks that
the executor will invoke. This object should not be freed by the user until the executor run has
completed.

• wc_err_t run() – This member function is a wrapper around the wc_executor_run()
function and invokes all the callbacks that have been setup earlier using the setup() member
function.

• int num_systems() – This function is a wrapper around the
wc_executor_num_systems() C API property function.

• int num_tasks() – This function is a wrapper around the
wc_executor_num_tasks() C API property function.

13
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

• int my_id() – This function is a wrapper around the wc_executor_system_id() C
API property function.

• int num_system_devices() – This function is a wrapper around the
wc_executor_num_devices() C API property function.

• bool is_master() – This function returns whether the executor is a master or not.
• void dump() – This function is a wrapper around the wc_executor_dump() C API

property function.

The CallbackInterface Class

The CallbackInterface is a base class from which the user should derive another class which
will be actually used by the executor. The beauty of this derived class method is that the user can add
their own custom member functions and data members in addition to those required by
CallbackInterface. The constructors and destructors of CallbackInterface are obvious,
but the member functions are described below. All the optional member functions are virtual and the
required member functions are pure virtual.

• void set(uint32_t max_devices, wc_devtype_t devtype) – This member
function can be optionally used by the user to set the maximum OpenCL devices and the device
type they want to use.

• const Executor *get_executor() – This member function can be called from any
callback and will return a constant pointer to the Executor object which was used for setting
up the CallbackInterface. It will return a valid value only if the setup has been done.

• uint32_t max_devices() – This member function returns the current value of the
maximum devices that the user has selected.

• wc_devtype_t device_type() – This member function returns the selected value of the
device type that the user has selected.

• wc_err_t on_start() – This is the same as the on_start C API callback.
• wc_err_t on_finish() – This is the same as the on_finish C API callback.
• wc_err_t get_code(std::string &code) – This is the same as the get_code C

API callback except for the fact that the user can return the code in a std::string object.
This is a pure virtual function and the user has to override it.

• wc_err_t get_build_options(std::string &options) – This is the same as
the get_build_options C API callback except for the fact that the user can return the code
in a std::string object.

• void on_code_compile(bool success) – This is the same as the
on_code_compile C API callback with the success parameter taking the value true or
false.

• uint64_t get_num_tasks() – This is the same as the get_num_tasks C API
callback. It is a pure virtual function and the user has to override it.

• uint32_t get_task_multiplier() – This is the same as the
get_task_range_multiplier C API callback.

• wc_err_t get_global_data(wc_data_t &gdata) – This is the same as the

14
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

Wisecracker™: A high performance distributed cryptanalysis framework

get_global_data C API callback except that the output variable is a reference instead of a
pointer.

• void free_global_data(wc_data_t &gdata): This function is the same as the
free_global_data C API callback except that this is pure virtual. In C++ it is necessary
for the user to manage the memory correctly. We still recommend using the WC_MALLOC style
macros for exchanging allocated buffers between the callbacks and the executors to avoid
random memory corruption bugs.

• wc_err_t on_receive_global_data(wc_data_t &gdata) : This function is the
same as the on_receive_global_data C API callback.

• wc_err_t on_device_start(wc_cldev_t &dev, uint32_t devindex,
const wc_data_t &gdata) – This function is the same as the on_device_start C
API callback.

• wc_err_t on_device_finish(wc_cldev_t &dev, uint32_t devindex,
const wc_data_t &gdata) – This function is the same as the on_device_finish C
API callback.

• wc_err_t on_device_range_exec(wc_cldev_t &dev,
uint32_t devindex, const wc_data_t &gdata, Range &range,
cl_event *outevent) – This function is the same as the on_device_range_exec C
API callback. The Range data structure is a member data structure of the
CallbackInterface class and holds the start and end of the range.

• wc_err_t on_device_range_done(wc_cldev_t &dev, uint32_t
devindex, const wc_data_t &gdata, Range &range, wc_data_t
&results) – This function is the same as the on_device_range_done C API callback.
The Range data structure is a member data structure of the CallbackInterface class and
holds the start and end of the range. Results have to be allocated using WC_MALLOC style
macros.

• wc_err_t on_receive_range_results(Range &range, wc_err_t
range_error, const wc_data_t &results) – This function is the same as the
on_receive_range_results C API callback. The Range data structure is a member
data structure of the CallbackInterface class and holds the start and end of the range.
The range_error parameter is the error sent back to the master which has been the return
value of the on_device_range_done() function for that range.

• void progress(float percent) – This function is the same as the progress C API
callback.

Conclusion

The C API is the main API for Wisecracker but users can also use the C++ API to write their
applications. There is hardly any overhead added by the C++ API as the user can read the source code
and see that the C++ wrapper has been kept as tight as possible to the C API.

The source code of wisecracker can be downloaded from https://github.com/vikasnkumar/wisecracker.
Professional level technical support can be obtained by contacting the developers at Selective Intellect

15
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

https://github.com/vikasnkumar/wisecracker

Wisecracker™: A high performance distributed cryptanalysis framework

LLC by emailing them at wisecracker@selectiveintellect.com.

16
© 2008-2012. Selective Intellect LLC. All Rights Reserved.

mailto:wisecracker@selectiveintellect.com

